Scalable subgraph representation learning through simplification
Date
2023-06-01
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Link prediction on graphs is a fundamental problem. Subgraph representation learning approaches (SGRLs), by transforming link prediction to graph classification on the subgraphs around the links, have achieved state-of-the-art performance in link prediction. However, SGRLs are computationally expensive, and not scalable to large-scale graphs due to expensive subgraph-level operations. To unlock the scalability of SGRLs, we propose a new class of SGRLs, that we call Scalable Simplified SGRL (S3GRL). Aimed at faster training and inference, S3GRL simplifies the message passing and aggregation operations in each link’s subgraph. S3GRL, as a scalability framework, accommodates various subgraph sampling strategies and diffusion operators to emulate computationally-expensive SGRLs. We propose multiple instances of S3GRL and empirically study them on small to large-scale graphs. Our extensive experiments demonstrate that the proposed S3GRL models scale up SGRLs without significant performance compromise (even with considerable gains in some cases), while offering substantially lower computational footprints (e.g., multi-fold inference and training speedup).
Description
Keywords
Graph neural networks, Link predictions, Subgraph representation learning