Life cycle assessment of conventional and alternative fuels for vehicles
Date
2018-08-01
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
For the near future, it is important that vehicles are run by alternative fuels. Before we can go ahead with the new alternatives, it is crucial that a comprehensive life cycle analysis is carried out for fuels. In this thesis study, a cradle-to-grave life cycle assessment of conventional and alternative fuels for vehicle technologies is performed, and the results are presented comparatively. The aim of the study is to investigate the environmental impact of different fuels for vehicles. A large variety of fueling options, such as diesel, electric, ethanol, gasoline, hybrid, hydrogen, methane, methanol and natural gas are considered for life cycle assessment of vehicles. The study results are shown in abiotic depletion, acidification, eutrophication, global warming, ozone layer depletion and human toxicity potential using three different impact assessment methods. The analyses show that hydrogen vehicle is found to have the lowest environmental impacts with ozone layer depletion of 8.14×10-10 kg CFC-11-eq/km and the human toxicity potential of 0.0017 kg (1,4 DB)-eq/km respectively. On the other hand, the gasoline-powered vehicle shows a poor performance in all categories with the global warming potential of 0.20 kg CO2-eq/km.
Description
Keywords
Life cycle assessment, Vehicles, Fuels, Hydrogen, Electric vehicles