Browsing by Author "Islam, Md. Manjurul"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Design synthesis of articulated heavy vehicles with active trailer steering systems(2010-04-01) Islam, Md. Manjurul; He, YupingA new design synthesis method for articulated heavy vehicles (AHVs) with an active trailer steering (ATS) system is examined and evaluated. Due to their heavy weights, large sizes, and complex configurations, AHVs have poor maneuverability at low speeds, and low lateral stability at high speeds. Various passive trailer steering and ATS systems have been developed for improving the low-speed maneuverability. However, they often have detrimental effects on the high-speed stability. To date, no systematic design synthesis method has been developed to coordinate the opposing design goals of AHVs. In this thesis, a new automated design synthesis approach, called a Single Design Loop (SDL) method, is proposed and investigated. The SDL method has the following distinguished features: 1) the optimal active design variables of ATS systems and the optimal passive vehicle design variables are searched in a single design loop; 2) in the design process, to evaluate the vehicle performance measures, a driver model is developed and it „drives‟ the vehicle model based on the well-defined testing specifications; and 3) the ATS controller derived from this method has two operational modes: one for improving the lateral stability at high speeds and the other for enhancing path-following at low speeds. To demonstrate the effectiveness of the new SDL method, it is applied to the design of an ATS system for an AHV with a tractor/full-trailer. In comparison to a conventional design approach, the SDL method can search through solutions in a much larger design space, and consequently it provides a more comprehensive set of optimal designs..Item Parallel design optimization of multi-trailer articulated heavy vehicles with active safety systems(2013-04-01) Islam, Md. Manjurul; He, YupingMulti-trailer articulated heavy vehicles (MTAHVs) exhibit unstable motion modes at high speeds, including jack-knifing, trailer swing, and roll-over. These unstable motion modes may lead to fatal accidents. On the other hand, these vehicle combinations have poor maneuverability at low speeds. Of all contradictory design criteria of MTAHVs, the trade-off relationship between the maneuverability at low speeds and the lateral stability at high speeds is the most important and fundamental. This trade-off relationship has not been adequately addressed. The goal of this research is to address this trade-off relationship through the design optimization of MTAHVs with active safety systems. A parallel design optimization (PDO) method is developed and applied to the design of MTAHVs with integrated active safety systems, which involve active trailer steering (ATS) control, anti-roll (AR) control, differential braking (BD) control, and a variety of combinations of these three control strategies. To derive model-based controllers, a single-trailer articulated heavy vehicle (STAHV) model with 5 degrees of freedom (DOF) and a MTAHV model with 7 DOF are generated. The vehicle models are validated with those derived using a commercial software package, TruckSim, in order to examine their applicability for the design optimization of MTAHVs with active safety systems. The PDO method is implemented to perform the concurrent design of the plant (vehicle model) and controllers. To simulate the closed-loop testing maneuvers, a driver model is developed and it is used to drive the virtual vehicle following the prescribed path. Case studies indicate that the PDO method is effective for identifying desired design variables and predicting performance envelopes in the early design stages of MTAHVs with active safety systems.