Browsing by Author "Pope, Kevin"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Multiphase flow and chemical reactor thermodynamics for hydrolysis and thermochemical production(2012-08-01) Pope, Kevin; Naterer, Greg F.Current techniques of hydrogen production (primarily reformation of fossil fuels) are unsustainable, releasing CO2 into the atmosphere, as well as consuming limited reserves of fossil fuels. The copper-chlorine cycle is a promising thermochemical process which can cost-effectively produce hydrogen with less environmental impact. In this thesis, new predictive formulations and experimental data are presented to improve the conversion extent and reaction rates of the hydrolysis reactor in the Cu-Cl cycle. This reactor has critical implications for the design, operation, and efficiency of the Cu-Cl cycle and hydrogen production. The relatively high temperature needed to drive the reaction requires a significant input of thermal energy. This thesis focuses on methods and analysis to reduce the unreacted steam in the hydrolysis reactor, in order to reduce the thermal energy input and improve the cycle’s thermal efficiency. A key outcome from this thesis is the experimental verification of reducing the steam to copper chloride ratio from 16:1 (past studies) to about 3:1. The results of this thesis provide key new data to design a more efficient hydrolysis reactor that can be effectively integrated within the Cu-Cl cycle.Item Partial separation of an azeotropic mixture of hydrogen chloride and water and copper (ii) chloride recovery for optimization of the copper-chlorine cycle(2017-09-01) Lescisin, Matthew P.; Rosen, Marc; Pope, Kevin; Jianu, O.A.An atmospheric-pressure distillation system is designed and constructed to partially separate hydrochloric acid and water. The system concentrates HCl(aq) between the electrolyzer and hydrolysis steps of the Copper-Chlorine (Cu-Cl) cycle. Thus, the system partially recycles HCl(aq), thereby decreasing the total operating cost of the cycle. The separation is only partial, as the mixture is unable to cross the azeotrope with only a single pressure. The distillation system consists primarily of one packed distillation column, which employs heating tapes and thermocouples to achieve a desired axial temperature profile. The column can be operated in batch or continuous mode. After performing physical distillation experiments, it is found that feeds less than azeotropic concentration are separated into H2O(l) and highly-concentrated HCl(aq) (albeit at less than azeotropic concentration). Feeds greater than azeotropic concentration are not investigated as they are extremely corrosive (rich in HCl) and would likely destroy the apparatus. Corrosion product is prevalent in the bottoms product; it is a source of error that is partially mitigated by filtration. No correlation is found between feed concentration and output concentration. That is, the distillate is H2O(l) and the bottoms is HCl(aq) near azeotropic concentration; as long as the feed concentration is any value less than azeotropic. In other words, the degree of separation is found to be independent of the feed concentration, for feed concentrations less than azeotropic. The bottoms concentration varies from experiment to experiment, but does so randomly, likely the result of corrosion impurities affecting the calculation of its concentration. A simulation of pressure-swing distillation (PSD) is also performed to help determine the feasibility of HCl-H2O separation and the degree of separation. Furthermore, an investigation into metastability and its effect on the crystallization of CuCl2 from HCl(aq) solutions is presented in Chapter 4.Item Performance assessment of transient behaviour of small wind turbines(2009-08-01) Pope, Kevin; Naterer, GregSmall wind turbine installations have a variety of potential uses, each with unique performance demands and operating conditions. Many applications require that the turbine is placed in wind conditions that are not ideal for optimum operation. Better predictive techniques can improve wind turbine performance through improved control strategies and enhanced designs. Conventional methods of wind power design and control utilize an average power coefficient. In this thesis, various techniques to predict the transient power coefficient of a wind turbine are developed. The operation of a Savonius wind turbine is accurately represented, with a new model which considers the flow distributions to predict the changes in power output at all rotor positions. Another model is developed that represents the dynamics of a small horizontal wind turbine, including the effect of transient wind conditions on rotor speed and acceleration. These can supplement current methods to determine turbine placement, selection and categorization.