Browsing by Author "Price, Terry J."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item A benchmarked dynamic model of xenon behavior in a molten salt reactor(2019-12-01) Price, Terry J.; Bereznai, George; Chvala, OndrejMolten salt reactors are a type of nuclear reactor that are being considered for deployment in the fourth generation nuclear power technology. Molten salt reactors use molten a alkali / actinide halide salt melt at temperatures far in excess of temperatures found in a typical pressurized water reactor. This thesis focuses on graphite moderated reactors with fluoride as the halide. The salt melt, called the fuel salt, is circulated between a moderator and a heat exchanger. While within the moderator, the dissolved actinides undergo fission and generate heat. Among products of nuclear fission is gaseous xenon, and in particular the isotope xenon-135 that acts as a neutron absorber. In solid fueled reactors, the xenon is effectively static and trapped within the fuel matrix. In a molten salt reactor, conversely, the fuel matrix is the mobile, circulating fuel salt that transports the xenon along with the rest of the fuel. This thesis focuses on modeling the behavior of xenon in a molten salt reactor. Existing literature in the field is reviewed and compiled. A model of xenon behavior in a molten salt reactor (the Molten Salt Reactor Experiment in particular) has been developed and the model is presented in this thesis. The model is benchmarked against experimental data using best available data, then minimal necessary justifiable adjustment is made to model parameters in order to fit the model to the experimental data. As a result this model is able to fit two transients, something that no xenon model of the molten salt reactor experiment has been able to do previously.Item The conceptualization and parameterization of a gaseous detector rasterizing pinhole gamma camera(2016-08-01) Price, Terry J.; Machrafi, RachidThis thesis details the conceptualization and parameterization of a gaseous detector rasterizing pinhole gamma camera. In this thesis, there is a literature review that describes the historical development of gamma imaging, a technical background that aims to give the reader the prerequisite background knowledge, a methodology, and, a result and discussion chapter. The thesis includes studies that determine if the concept of a gaseous detector rasterizing pinhole gamma camera is feasible, mathematical modeling that allowed for the exploration of the idea, software development that automated the mathematical modeling, parametric studies that explored the performance of various sets of design parameters, and, finally an iterative engineering design process that converged at a final set of design parameters. Ultimately, a set of design parameters, from which a prototype may be constructed, were developed.