Browsing by Author "Wrock, Michael"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Automatic trajectory generation for mobile-manipulators using 3D LiDAR scans of unknown surfaces(2019-07-01) Wrock, Michael; Nokleby, ScottAn approach to improving worker safety in underground uranium drift mining through automating the radiation scanning and shotcrete application process is presented. Utilizing the Robot Operating System (ROS) framework to achieve autonomous operation, workers can be removed from the most hazardous areas of the mine. Worker knowledge and experience is utilized when instructing the system from a remote location. The current approach to radiation scanning exposes the workers to radiation hazards and employs the use of cumbersome handheld radiation sensors that are difficult to position accurately. Sprayable concrete liner known as shotcrete is applied to all surfaces of the drift to protect workers from hazards, such as rock fall and radon gas. Proper application of shotcrete and visual estimation of its thickness require highly skilled operators. This research presents a trajectory generation algorithm that is capable of autonomously applying shotcrete to unknown surface geometries. The trajectory generation algorithm can also be used to perform radiation scanning with the use of a previously developed tool changer. A novel localization algorithm developed for use in underground mining uses the Point Cloud Library (PCL) to accurately register point cloud scans of the drift from before and after shotcrete application and produces thickness estimates of the entire shotcrete area. Estimating shotcrete thickness allows for verification to ensure worker safety and eliminates the human error present in current thickness estimation methods. The hardware and software systems are highly modular in order to allow components or algorithms to easily be replaced or implemented on other systems. The localization system presented uses fiducial markers that allow the robot to generate 3D point cloud representations of the entire mine. While scanning the drift face, a shielded radiation sensor can be used for more directional measurements, and the locations at which the measurements are taken relative to the drift face can be recorded with great accuracy. Verifying shotcrete thickness, mapping mine drifts, and protecting workers from hazardous environments are three factors which contribute to improved safety and monitoring of underground uranium mines.Item Haptic teleoperation of mobile manipulator systems using virtual fixtures.(2011-11-01) Wrock, Michael; Nokleby, ScottIn order to make the task of controlling Mobile-Manipulator Systems (MMS) simpler, a novel command strategy that uses a single joystick is presented to replace the existing paradigm of using multiple joysticks. To improve efficiency and accuracy, virtual fixtures were implemented with the use of a haptic joystick. Instead of modeling the MMS as a single unit with three redundant degrees-of-freedom (DOF), the operator controls either the manipulator or the mobile base, with the command strategy choosing which one to move. The novel command strategy uses three modes of operation to automatically switch control between the manipulator and base. The three modes of operation are called near-target manipulation mode, off-target manipulation mode, and transportation mode. The system enters near-target manipulation mode only when close to a target of interest, and allows the operator to control the manipulator using velocity control. When the operator attempts to move the manipulator out of its workspace limits, the system temporarily enters transportation mode. When the operator moves the manipulator in a direction towards the manipulator’s workspace the system returns to near-target manipulation mode. In off-target manipulation mode, when the operator moves the manipulator to its workspace limits, the system retracts the arm near to the centre of its workspace to enter and remain in transportation mode. While in transportation mode the operator controls the base using velocity control. Two types of virtual fixtures are used, repulsive virtual fixtures and forbidden region virtual fixtures. Repulsive virtual fixtures are present in the form of six virtual walls forming a cube at the manipulator’s workspace limits. When the operator approaches a virtual wall, a repulsive force is felt pushing the operator’s hand away from the workspace limits. The forbidden region virtual fixtures prevent the operator from driving into obstacles by disregarding motion commands that would result in a collision. The command strategy was implemented on the Omnibot MMS and test results show that it was successful in improving simplicity, accuracy, and efficiency when teleoperating a MMS.