Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework

dc.contributor.authorEl-Assady, Mennatallah
dc.contributor.authorSevastjanova, Rita
dc.contributor.authorSperrle, Fabian
dc.contributor.authorKeim, Daniel
dc.contributor.authorCollins, Christopher
dc.date.accessioned2019-07-15T19:03:53Z
dc.date.accessioned2022-03-29T20:15:48Z
dc.date.available2019-07-15T19:03:53Z
dc.date.available2022-03-29T20:15:48Z
dc.date.issued2017-08-29
dc.description.abstractTopic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.en
dc.identifier.citationM. El-Assady, R. Sevastjanova, F. Sperrle, D. Keim, and C. Collins, “Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework,” IEEE Transactions on Visualization and Computer Graphics, vol. 24, iss. 1 , pp. 382-391, 2018.en
dc.identifier.issn1077-2626
dc.identifier.urihttps://hdl.handle.net/10155/1055
dc.language.isoenen
dc.publisherIEEEen
dc.relation.ispartofseriesIEEE Transactions on Visualization and Computer Graphics Volume 24en
dc.relation.ispartofseriesPages 382 - 391en
dc.subjectAnalytical modelsen
dc.subjectAdaption modelsen
dc.subjectComputational modelingen
dc.subjectVisual analyticsen
dc.subjectData modelsen
dc.subjectLearning (artificial intelligence)en
dc.titleProgressive Learning of Topic Modeling Parameters: A Visual Analytics Frameworken
dc.typeArticleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ela2017b.pdf
Size:
1.7 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.61 KB
Format:
Plain Text
Description: