A novel method of generating Dendritic cells in vitro using the KG-1 cell line and its use as a model for testing effects of lactic acid bacteria
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Dendritic cells (DCs) are prime mediators of innate and adaptive immunity. In humans the DC population comprise only 0.1% of all leukocytes, making their isolation and ex vivo manipulation difficult. Since study of DC activity in vitro requires large numbers of DCs to be readily available, a cell line model, KG-1, was selected. KG-1 cells are a cytokine-responsive human CD34+ myelomonocytic cell line and can be induced to differentiate to a DC phenotype. A range of differentiation agents and protocols were compared, and differentiation efficiency was determined using both morphological features and cell surface marker expression. Expression of CD83, CD11c, CD123, CD86, HLA-DR and DC-SIGN was assessed by immunofluorescence and flow cytometry. KG-1 cells stimulated with 10 ng/ml PMA and 100 ng/ml Ionomycin were found to be the ideal model for obtaining Dendritic Like Cells (DLCs) in vitro. The effect of lactic acid bacteria on KG-1 differentiation was also tested using two immunomodulatory strains, Lactobacillus rhamnosus R0011 and Lactobacillus helveticus R0052. After 5 days of incubation with R0011 the KG-1 cells expressed DC-specific surface markers CD83, CD86, CD11c, CD123, DC-SIGN and HLA-DR. Lactobacillus rhamnosus R0011 induced a marked rise in CD83 expression with a mean fluorescence intensity of 115.3 after 5 days, suggesting this strain promoted KG-1 differentiation to DLC. Analysis of cytokine by KG-1 DLC indicated that constitutive production of pro-inflammatory cytokines TNF-α and IL-12 was minimal. However IL-10 and TGF-β were detected after TLR-agonist stimulation of R0011-differentiated KG-1s. This study aimed to develop and assess the KG-1 cell model for screening effects of mediators and microbes on DC.