Second law analysis of a liquid cooled battery thermal management system for hybrid and electric vehicles

Date

2010-08-01

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

As hybrid and electric vehicles continue to evolve there is a need for better battery thermal management systems (BTMS), which maintain uniformity of operating temperature of the batteries in the vehicles. This thesis investigates the use of an indirect liquid cooled system, which can be applied to hybrid and electric vehicles. The design is modeled as part of the UOIT EcoCAR. The predominant focus of this indirect liquid cooled system is the entropy generation in each of the components within the system, as well as a total system analysis. Four main components of the system are the battery module, heat exchanger, pump, and throttle. The battery module coolant tubes and the entire heat exchanger model are developed. Various parameters are changed in each component, leading to a decrease in entropy generation depending on the variable changed. Of the four components identified, the heat exchanger produced the majority of entropy generation, which leads to an overall increase in system entropy generation. There are many factors to consider when designing a liquid cooled BTMS. The new model shows a unique ability to improve system performance by reducing the entropy generation in the BTMS.

Description

Keywords

Entropy, Second law, Heat transfer, Electric vehicle, Battery

Citation