Interactive visualization of the collaborative research network

Date

2012-01-01

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Social networks have been evolving over the past few years, leading to a rapid increase in the number and complexity of relationships among their entities. In this research, we focus on a large scale dataset known as the Digital Bibliography and Library Project or DBLP, which contains information on all publications that have been published in computer and information science related journals and conference proceedings. We model the DBLP dataset as a social network of research collaborations. DBLP is a structured and dynamic dataset stored in the XML file format; it contains over 850,000 authors and 2 million publications, and the resulting collaboration social network is a scale-free network. We define DBLP collaboration social network as a graph that consists of researchers as nodes and links representing the collaboration or co-authorship relationships among the researchers. In this work, we implement a data analysis algorithm called Multidimensional Scaling (MDS) to represent the degree of collaboration among the DBLP authors as Euclidean distances in 2-dimensional space in order to analyze, mine and understand the relational information in this large scale network in a visual way. MDS is a useful technique for data visualization and graph drawing methods, but it has high computational complexity for large scale graphs such as the DBLP graph. Therefore, we propose different solutions to overcome this problem, and improve the MDS performance. In addition, as the quality of the MDS result is measured by a metric known as the stress value, we use the steepest descent method to minimize the stress in an iterative process called stress optimization in order to generate the best geometric layout of the graph nodes in 2-dimensional space. We also propose a solution to further enhance the graph visualization by partitioning the graph into sub-graphs and using repelling forces among nodes within the same sub-graph. Finally, we developed a new visualization tool that can handle the large scale of the DBLP graph, and provides the user a number of significant features that allow them to explore, navigate and sift for information through the graph, such as graph scaling and graphical search functionality.

Description

Keywords

Data visualization, Multidimensional scaling, DBLP, Collaborative research network, Graphs

Citation