Novel tele-operation of mobile-manipulator systems

Date
2009-08-01
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
A novel algorithm for the simplified tele-operation of mobile-manipulator systems is presented. The algorithm allows for unified, intuitive, and coordinated control of mobile manipulators, systems comprised of a robotic arm mounted on a mobile base. Unlike other approaches, the mobile-manipulator system is modeled and controlled as two separate entities rather than as a whole. The algorithm consists of thee states. In the rst state a 6-DOF (degree-of-freedom) joystick is used to freely control the manipulator's position and orientation. The second state occurs when the manipulator approaches a singular configuration, a con guration where the arm instantaneously loses a DOF of motion capability. This state causes the mobile base to proceed in such a way as to keep the end-effector moving in its last direction of motion. This is done through the use of a constrained optimization routine. The third state is triggered by the user: once the end-effector is in the desired position, the mobile base and manipulator both move with respect to one another keeping the end-effector stationary and placing the manipulator into an ideal configuration. The proposed algorithm avoids the problems of algorithmic singularities and simplifies the control approach. The algorithm has been implemented on the Jasper Mobile-Manipulator System. Test results show that the developed algorithm is effective at moving the system in an intuitive manner.
Description
Keywords
Mobile-manipulator systems, Algorithmic singularities, Jasper Mobile-Manipulator
Citation