Incremental learning algorithm for anomaly detection applied to computed tomography scans in nuclear industry

dc.contributor.advisorGaber, Hossam
dc.contributor.advisorRen, Jing
dc.contributor.authorAdegboro, Oluwabukola G.
dc.date.accessioned2023-01-10T15:53:03Z
dc.date.available2023-01-10T15:53:03Z
dc.date.issued2022-12-01
dc.degree.disciplineElectrical and Computer Engineering
dc.degree.levelMaster of Applied Science (MASc)
dc.description.abstractDuring routine nuclear power plant (NPP) inspection, each maintenance tool is inspected manually before and after use on a nuclear reactor. This could result in long inspection duration (up to months), time, and resource wastage. To address this, an automated tool inspection process using a classification-based supervised anomaly detection technique is employed to categorize the CT scan of the NPP tool as defective (with missing tool parts) or not (defect-free). Furthermore, the incremental learning (IL) concept has been introduced for supervised anomaly detection and is suitable for data-restricted applications. Existing IL approaches have employed ML techniques such as Naive Bayes or proximity measures such as nearest neighbors on numeric 1D datasets and for intrusion detection. In this research, a new soft thresholding-based algorithm that can enhance model prediction in existing IL frameworks and ensure stable training towards the desired prediction accuracy for supervised anomaly detection on 2D data is proposed.en
dc.description.sponsorshipUniversity of Ontario Institute of Technologyen
dc.identifier.urihttps://hdl.handle.net/10155/1561
dc.language.isoenen
dc.subjectIncremental learningen
dc.subjectCT scanen
dc.subjectAnomaly detectionen
dc.subjectContinual learningen
dc.titleIncremental learning algorithm for anomaly detection applied to computed tomography scans in nuclear industryen
dc.typeThesisen
thesis.degree.disciplineElectrical and Computer Engineering
thesis.degree.grantorUniversity of Ontario Institute of Technology
thesis.degree.nameMaster of Applied Science (MASc)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Adegboro_Oluwabukola_G.pdf
Size:
8.82 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: