A hybrid approach for intersection management in V2X-enabled connected vehicles

dc.contributor.advisorElgazzar, Khalid
dc.contributor.advisorAlWidian, Sanaa
dc.contributor.authorElmoghazy, Ammar
dc.date.accessioned2024-08-27T16:11:59Z
dc.date.available2024-08-27T16:11:59Z
dc.date.issued2024-08-01
dc.degree.disciplineElectrical and Computer Engineering
dc.degree.levelMaster of Applied Science (MASc)
dc.description.abstractAutonomous Vehicles (AVs) have the potential to revolutionize transportation by enhancing safety, efficiency, and convenience. However, AVs face significant challenges in complex urban environments, particularly in accurately perceiving and navigating through intersections mainly due to occlusions. This thesis addresses these challenges by integrating Vehicle-to-Everything (V2X) communication with onboard sensors to improve AV perception and decision-making capabilities. In particular, this thesis proposes a hybrid centralized-decentralized management system, which maximizes the benefits of centralized control for strategic traffic management and the responsiveness of decentralized decision-making, using edge nodes as a traffic coordinators helps reduces the computational needs on the vehicle. Such a system leverages V2X data to enhance situational awareness, optimize traffic flow, and improve overall safety and efficiency in urban environments. The methodology involves using Simultaneous Localisation and Mapping - SLAM for mapping, particle filters for localization, and waypoint generation for planning and control. The hybrid system’s performance was evaluated through simulations and real-world experiments using scaled-down vehicles equipped with advanced sensing and communication technologies. Compared to purely centralized or decentralized approaches, the hybrid system achieved up to a 14% reduction in average travel times through intersections and a 20% improvement in overall traffic flow efficiency. This thesis contributes to the development of intelligent transportation systems by demonstrating the efficacy of hybrid intersection management in enhancing AV performance in urban environments.
dc.description.sponsorshipUniversity of Ontario Institute of Technology
dc.identifier.urihttps://hdl.handle.net/10155/1824
dc.language.isoen
dc.subject.otherConnected Autonomous Vehicles (CAV)
dc.subject.otherV2X
dc.subject.otherAutonomous intersection management
dc.subject.otherCooperative driving
dc.subject.otherf1tenth
dc.titleA hybrid approach for intersection management in V2X-enabled connected vehicles
dc.typeThesis
thesis.degree.disciplineElectrical and Computer Engineering
thesis.degree.grantorUniversity of Ontario Institute of Technology
thesis.degree.nameMaster of Applied Science (MASc)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Elmoghazy_Ammar.pdf
Size:
35.16 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.89 KB
Format:
Item-specific license agreed upon to submission
Description: