Enhancing password security: advancements in password segmentation technique for high-quality honeywords

dc.contributor.advisorVargas Martin, Miguel
dc.contributor.authorSannihith Lingutla, Satya
dc.date.accessioned2023-08-25T19:46:20Z
dc.date.available2023-08-25T19:46:20Z
dc.date.issued2023-07-01
dc.degree.disciplineArtificial Intelligenceen
dc.degree.levelMaster of Information Technology Security - projecten
dc.description.abstractPasswords play a major role in the field of network security and play as a first line of defense against attackers who gain unauthorized access to the profiles. However, passwords are vulnerable to various types of attacks making it essential to ensure that they are strong, unique, and confidential. One of the major techniques that evolved over time to enhance password security is the use of honeywords that are decoy passwords designed to alert the administrator when a data breach has happened. The main goal of this project is to addresses one of the limitations of a honeyword generation technique, called Chunk-GPT3, by performing better password segmentation through a re-engineered chunking algorithm that maps digits into characters, and which would seem to lead to better honeywords. We justify our re-engineering method and generate honeywords that we compare to those generated by Chunk-GPT3. Nonetheless, after evaluating honeywords using the HWSimilarity metric, the results suggest that improved chunking does not necessarily lead to better honeywords in all cases.en
dc.description.sponsorshipUniversity of Ontario Institute of Technologyen
dc.identifier.urihttps://hdl.handle.net/10155/1657
dc.language.isoenen
dc.subjectAuthenticationen
dc.subjectIntrusion detectionen
dc.subjectHoneywordsen
dc.subjectPasswordsen
dc.subjectLanguage modelsen
dc.titleEnhancing password security: advancements in password segmentation technique for high-quality honeywordsen
dc.typeMaster's Projecten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sannihith_Lingutla_Satya.pdf
Size:
589.87 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: