Health and safety enhancement of lithium-ion batteries for fast-charging

Date

2021-08-01

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

With the ever-increasing demand for battery electric vehicles, the expectation of safety, range, and fast charging has become a major focus for industry players and researchers. The research presented herein sought to improve the safety of Lithium-ion (Li-ion) batteries and the health of the cells while fast charging. The work presented has introduced recurrent neural network models and other innovative processes for the estimation of the core temperature in Li-ion cells, and the detection of thermal and voltage faults that could cause thermal runaway. A novel health-conscious fast charging (HCFC) strategy for Li-ion battery packs validated through experimentation was also developed to minimize the charge time while maximizing the longevity and useable capacity of the battery pack. Results from this research verified the reliability of recurrent neural networks for battery signal estimation and fault detection while also demonstrating the performance of the HCFC strategy compared to the standard approach.

Description

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of University of Ontario Institute of Technology’s products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.

Keywords

Lithium-ion, Fault detection, Fast-charging, Neural networks, Lithium plating

Citation