Assessing district energy systems performance integrated with multiple thermal energy storages.
dc.contributor.advisor | Rosen, Marc A. | |
dc.contributor.author | Rezaie, Behnaz | |
dc.date.accessioned | 2013-10-04T15:19:31Z | |
dc.date.accessioned | 2022-03-29T17:52:52Z | |
dc.date.available | 2013-10-04T15:19:31Z | |
dc.date.available | 2022-03-29T17:52:52Z | |
dc.date.issued | 2013-08-01 | |
dc.degree.discipline | Mechanical Engineering | |
dc.degree.level | Doctor of Philosophy (PhD) | |
dc.description.abstract | The goal of this study is to examine various energy resources in district energy (DE) systems and then DE system performance development by means of multiple thermal energy storages (TES) application. This study sheds light on areas not yet investigated precisely in detail. Throughout the research, major components of the heat plant, energy suppliers of the DE systems, and TES characteristics are separately examined; integration of various configurations of the multiple TESs in the DE system is then analysed. In the first part of the study, various sources of energy are compared, in a consistent manner, financially and environmentally. The TES performance is then assessed from various aspects. Then, TES(s) and DE systems with several sources of energy are integrated, and are investigated as a heat process centre. The most efficient configurations of the multiple TESs integrated with the DE system are investigated. Some of the findings of this study are applied on an actual DE system. The outcomes of this study provide insight for researchers and engineers who work in this field, as well as policy makers and project managers who are decision-makers. The accomplishments of the study are original developments TESs and DE systems. As an original development the Enviro-Economic Function, to balance the economic and environmental aspects of energy resources technologies in DE systems, is developed; various configurations of multiple TESs, including series, parallel, and general grid, are developed. The developed related functions are discharge temperature and energy of the TES, and energy and exergy efficiencies of the TES. The TES charging and discharging behavior of TES instantaneously is also investigated to obtain the charging temperature, the maximum charging temperature, the charging energy flow, maximum heat flow capacity, the discharging temperature, the minimum charging temperature, the discharging energy flow, the maximum heat flow capacity, and performance cycle time functions of the TES. Expanding to analysis of one TES integrated with the DE system, characteristics of various configurations of TES integrated with DE systems are obtained as functions of known properties, energy and exergy balances of the DE system including the TES(s); and energy and exergy efficiencies of the DE system. iv The energy, exergy, economic, and CO2 emissions of various energy options for the DE system are investigated in a consistent manner. Different sources of energy considered include natural gas, solar energy, ground source heat pump (GSHP), and municipal solid waste. The economic and environmental aspects and prioritization, and the advantages of each technology are reported. A community-based DE system is considered as a case study. For the considered case study, various existing sizing methods are applied, and then compared. The energy sources are natural gas, solar thermal, geothermal, and solid waste. The technologies are sized for each energy option, then the CO2 emissions and economic characteristics of each technology are analysed. The parallel configuration of the TESs delivers more energy to the DE system compared with other configurations, when the stored energy is the same. With increasing the number of parallel TESs results in a higher energy supply to the DE system. The efficiency of the set of the TESs is also improved by increasing the number of parallel TESs. The tax policy, including the tax benefits and carbon tax, is a strong tool which will influence the overall cost of the energy supplier’s technology for the DE systems.The Enviro-Economic Function for the TESs is proposed and is integrated with the DE system, which suggests that the number of TESs required. The energy and exergy analyses are applied to the charging and discharging stages of an actual TES in the Friedrichshafen DE system. For the Friedrichshafen DE system, the performance is analysed based on energy and exergy analyses approach. Furthermore, by using the developed functions in the present study some modifications are suggested for the Friedrichshafen DE system for better performance. | en |
dc.description.sponsorship | University of Ontario Institute of Technology | en |
dc.identifier.uri | https://hdl.handle.net/10155/352 | |
dc.language.iso | en | en |
dc.subject | Multiple thermal energy storages | en |
dc.subject | Thermal energy storage | en |
dc.subject | District energy systems | en |
dc.subject | District heating systems | en |
dc.title | Assessing district energy systems performance integrated with multiple thermal energy storages. | en |
dc.type | Dissertation | en |
thesis.degree.discipline | Mechanical Engineering | |
thesis.degree.grantor | University of Ontario Institute of Technology | |
thesis.degree.name | Doctor of Philosophy (PhD) |