Generative models for multi-modality image inpainting and resolution enhancement
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Recently, deep learning methods specifically generative adversarial networks (GANs) have been used to rapidly improve a wide range of image enhancement tasks including image inpainting and image resolution enhancement also known as super-resolution. Image-to-image translation methods convert an image provided in a source modality (e.g., a nighttime image) to an image of a target modality (e.g., a daytime image) by learning an image generation function. These methods can be applied to a wide variety of problems in image processing and computer vision. The use of GANs for image-to-image translation has also been extensively studied. We propose the problem of combining the image-enhancement tasks (e.g., image inpainting or super-resolution) with the image-to-image translation task in a joint formulation. Given a distorted nighttime image of a scene can one recover a restored daytime image of the same scene? Two models to address the joint problem will be presented. Our models are validated on night-to-day joint image translation and enhancement for both super-resolution and inpainting. Promising qualitative and quantitative results will be reported.